ACOUSTIC VIBRATIONS IN GERMINATION AND GROWTH OF CHERRY-TOMATO SEEDLINGS

Main Article Content

Juliana Carneiro Vieira
Thiago Fernandes Qualhato

Abstract

Signal-response perception in plants has been widely studied, known as phytoacoustic, bioacoustic or ecoacoustic signaling. The aim of this research was to identify the induction of germination and growth of cherry tomatoes through acoustic vibrations with classical music. The experiment took a quantitative approach, using 240 seeds of Solanum lycopersicum var. cerasiforme for two experiments: germination and growth. There were 8 and 50 replicates, distributed and identified from G1 to G8, for two different treatments: plants subjected to the presence and absence of acoustic vibration, respectively TAC-CV and TAC-SV. The explanatory design describes the processes for selecting and asepticizing the seeds, such as the use of 1% NaClO and 70% alcohol, as well as identifying the dimensions and asepsis of the materials, glassware and acoustic chamber. The types of equipment used during the research were also described, such as the laminar flow chamber and the autoclave. Data analysis consisted of individual germination counts and the measurement of roots and hypocotyls with a ruler, assessed phenotypically and quantified after 10 days in both treatments. The results were positive, with 58% germination over a six-day period in the vibration treatment, compared to the 95% germination rate of the ISLA Line, as well as a reduction in the rate of dead and contaminated seedlings. Positive growth was also observed in the roots and hypocotyls. It can be concluded that acoustic vibration positively influenced the germination and growth of cherry tomatoes, suggesting that this technique could be a promising complement to other techniques for sustainable vegetable production.

Article Details

How to Cite
VIEIRA, J. C.; QUALHATO, T. F. ACOUSTIC VIBRATIONS IN GERMINATION AND GROWTH OF CHERRY-TOMATO SEEDLINGS. Conjuncture Bulletin (BOCA), Boa Vista, v. 20, n. 58, p. 383–406, 2024. DOI: 10.5281/zenodo.14538626. Disponível em: https://revista.ioles.com.br/boca/index.php/revista/article/view/6262. Acesso em: 23 feb. 2025.
Section
Articles

References

ALTUNTAS, O.; OZKURT, H. “The assessment of tomato fruit quality parameters under different sound waves”. Food Science and Technology, vol. 56, n. 4, 2019.

APPEL, H. M.; COCROFT, R. B. “Plants respond to leaf vibrations caused by insect herbivore chewing”. Oecologia, vol. 175, n. 4, 2014.

APPEL, H.; COCROFT, R. “Plant ecoacoustics: a sensory ecology approach”. Trends in Ecology and Evolution, vol. 38, n. 7, 2023.

ARAÚJO, W. L. et al. “Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks”. Canadian Journal of Microbiology, vol. 47, n. 3, 2001.

AZGOMI, S. et al. “The importance of sound rhythm: music and noise elicit diferent biological responses in Satureja hortensis L”. Theoretical and Experimental Plant Physiology, vol. 35, n. 3, 2023.

BARROS, R. P. et al. “A rosa do deserto utilizada como ferramenta do ensino de botânica e da prática docente”. Boletim de Conjuntura (BOCA), vol. 16, n. 46, 2023.

BHAR, A.; CHAKRABORTY, A. ROY, A. “Plant Responses to Biotic Stress: Old Memories Matter”. Plants, vol. 11, n. 84, 2022.

BRASIL. Cultivo de tomate protegido sem solo obtém produtividade superior no Ceará. Fortaleza: Embrapa, 2022. Disponível em: Acesso em: 16/05/2024.

BRASIL. Regras para análise de sementes. Brasília: Mapa, 2009. Disponível em: . Acesso em: 16/05/2024.

FRONGIA, F.; FORTI, L.; ARRU, L. “Sound perception and its effects in plants and algae”. Plant Signaling and Behavior, vol. 15, n. 12, 2020.

GAGLIANO, M. “Green symphonies: a call for studies on acoustic communication in plants”. Behavioral Ecology, vol. 24, n. 4, 2013.

GHOSH, R. et al. “Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis”. Scientific Reports, vol. 6, 2016.

GIL, A. C. Como elaborar projetos de pesquisa. Barueri: Editora Atlas, 2023.

GIOVANELLI, G. et al. “Variation in antioxidant components of tomato during vine and post-harvest ripening”. Journal of the Science of Food and Agriculture, vol. 79, 1999.

GONG, M. et al. “Ultrasonic treatment can improve maize seed germination and abiotic stress resistance”. BMC Plant Biology, vol. 24, n. 758, 2024.

GRASSO, S. et al. “Micromachined Tools Using Acoustic Wave Triggering for the Interaction with the Growth of Plant Biological Systems”. Micromachines, vol. 13, n. 9, 2022.

HENRÍQUEZ, M. A. G. et al. “Efecto de la aplicación de dos tipos de música en el desarrollo de plantas de maíz (Zea mays L)”. Multiciencias, vol. 10, 2010.

IBGE – Instituto Brasileiro de Geografia e Estatística. Produção de tomate de 2023. Brasil: IBGE, 2023. Disponível em: Acesso em: 07/12/2024.

KHAIT, I. et al. “Sound perception in plants”. Seminars in Cell and Developmental Biology, vol. 92, 2019.

KHAIT, I. et al. “Sounds emitted by plants under stress are airborne and informative”. Cell, vol. 183, 2023.

KIM, J. Y. et al. “Sound Waves Promote Arabidopsis thaliana Root Growth by Regulating Root Phytohormone Content”. International Journal of Molecular Sciences, vol. 22, n. 11, 2021.

KIM, J. Y. et al. “Specific audible sound waves improve flavonoid contents and antioxidative properties of sprouts”. Scientia Horticulturae, vol. 276, 2021.

KLEIN, R. M.; EDSALL, P. C. “On the reported effects of sound on the growth of plants”. Bioscience, vol. 15, 1965.

LAUTERWASSER, A. Wasser klang bilder. Aarau: AT Verlag, 2002.

LENUCCI, M. et al. “Antioxidant composition in cherry and high-pigment tomato cultivars”. Journal of Agricultural and Food Chemistry, vol. 54, n. 7, 2006.

MELO, H. C. “Plants detect and respond to sounds”. Planta, vol. 257, n. 3, 2023.

MELO, H. C. Plantas: biologia sensorial, comunicação, memória e inteligência. Curitiba: Editora Appris, 2021.

PELLING, A. E. et al. “Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae”. Science, vol. 305, n. 5687, 2004.

PETRAGLIA, M. S. Estudos sobre ações de vibrações acústicas e música em organismos vegetais (Dissertação de Mestrado em Biologia Geral e Aplicada). Botucatu: UNESP, 2008.

QUISEN, R. C.; DEGENHARDT-GOLDBACH, J. “Metodologia de descontaminação e germinação de sementes de Pinus taeda L”. Boletim Técnico Embrapa, n. 499, 2020.

ROSA, R. C. T. et al. “Detecção de Fusarium oxysporum f. sp. Lycopersici em sementes de tomateiro pelo método de papel de filtro com adição de restritores”. Pesquisa Agropecuária Pernambucana, vol. 27, n. 2, 2022.

TOMAZI, Y. et al. “Métodos de assepsia em sementes de feijão”. Revista Verde de Agroecologia e Desenvolvimento Sustentável, vol. 14, n. 2, 2019.

TOMPKINS, P.; BIRD, C. A vida secreta das plantas: a vida harmônica das plantas. Rio de Janeiro: Editora Expressão e Cultura, 1977.

VEITS, M. et al. “Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration”. Ecology Letters, vol. 22, n. 9, 2019.

VICIENT, C. M. “The effect of frequency-specific sound signals on the germination of maize seeds”. BMC Research Notes, vol. 10, 2017.

VIEIRA, J. C.; QUALHATO, T. F. “Construction of the Acoustic Chamber and Execution Protocol for Germination and Growth of Cherry-Tomato Seedlings”. In: COSTA, M. F. M. et al. Hands-on Science: Science Education and Sustainability. Madrid: Universidad de Vigo, 2024.

WASSERMANN, B. KORSTEN, L.; BERG, G. “Plant Health and Sound Vibration: Analyzing Implications of the Microbiome in Grape Wine Leaves”. Pathogens, vol. 10, n. 63, 2021.

YE, Z. et al. “Evidence for the role of sound on the growth and signal response in duckweed”. Plant Signaling and Behavior, vol. 18, n. 1, 2023.

Most read articles by the same author(s)