OPTIMIZATION OF EMERGENCY RESPONSE IN THE ELECTRIC SECTOR

Main Article Content

Bianca Jupiara Fortes Schardong
Vinícius Jacques Garcia
Gabriela Sanson Kiefer
Nelson Guilherme Machado Pinto

Abstract

The electric power industry is facing increasing challenges, prompting utilities to adopt diverse strategies to improve service efficiencies and meet regulatory requirements. In this context, the service order service sector, especially emergency ones, stands out due to its high cost and the criticality associated with the nature and consequences of these services. This study aims to analyze the critical factors that influence the efficiency in the execution of these services, using mathematical modeling techniques, specifically the Vehicle Routing Problem (PRV). The objective was to prepare a representation that would reproduce the essential characteristics of the dispatch process, working with decision criteria at the moment when emergency calls arise to serve the concessionaires' teams when there is already a pre-established route with scheduled commercial orders. The central focus of the study lies in the analysis of two decision criteria: the Emergency Waiting Time ( ) and the Commercial Lead Time ( ). The methodology adopted involves the application of Hierarchical Process Analysis (AHP) as a multicriteria approach to classify the alternatives. The modeling developed, together with the classification of alternative solutions, highlights the importance of considering waiting time in service decisions, through case studies in an emergency scenario with real data from an electricity utility. From the results presented, it was possible to envision a decision-making context that includes a compromise between the impact caused by the delay in commercial orders and the urgency of providing emergency services, both measured with the waiting time costs of each type of service.  The calculations show that prioritizing the emergency order is not always the ideal choice, as there are situations in which the weighting reveals that the cost of delaying the commercial order is greater than that of delaying the emergency order. Thus, the practical results indicate the effectiveness of combining the AHP methodology with PRV in the electricity distribution sector. In this way, it was concluded that the approach is very promising for practical contexts, allowing the decision-maker possibilities for analysis in order to weigh up their subjective choices defined a priori.

Article Details

How to Cite
SCHARDONG, B. J. F.; GARCIA, V. J.; KIEFER, G. S. . .; GUILHERME MACHADO PINTO, N. . OPTIMIZATION OF EMERGENCY RESPONSE IN THE ELECTRIC SECTOR. Conjuncture Bulletin (BOCA), Boa Vista, v. 18, n. 52, p. 82–115, 2024. DOI: 10.5281/zenodo.11003159. Disponível em: https://revista.ioles.com.br/boca/index.php/revista/article/view/3928. Acesso em: 18 dec. 2024.
Section
Articles

References

AHLQVIST, V. et al. “A survey comparing centralized and decentralized electricity markets.” Energy Strategy Reviews, vol. 40, n. 100812, 2022.

ANEEL - Agência Nacional de Energia Elétrica. - Qualidade da Energia Elétrica. Brasília: ANEEL, 2019. Disponível em: . Acesso em: 23/01/2024.

ANEEL - Agência Nacional de Energia Elétrica. Aplicações: tempos médios de atendimento. Brasília: ANEEL, 2015. Disponível em: . Acesso em: 23/01/2024.

ANEEL - Agência Nacional de Energia Elétrica. Limites dos indicadores DIC, FIC, DMIC e DICRI. Brasília: ANEEL, 2020. Disponível em: . Acesso em: 23/01/2024.

ANEEL - Agência Nacional de Energia Elétrica. Procedimentos da Distribuição. Brasília: ANEEL, 2008. Disponível em: . Acesso em: 23/01/2024.

ANEEL - Agência Nacional de Energia Elétrica. Resolução Normativa n. 414, 09 de setembro de 2010. Brasília: ANEEL, 2010. Disponível em: . Acesso em: 23/01/2024.

ANEEL - Agência Nacional de Energia Elétrica. Tempo de Atendimento às Ocorrências Emergenciais. Brasília: ANEEL, 2019. Disponível em: . Acesso em: 23/01/2024.

ANTUNES, C.; ALVES, M. “Programação linear multiobjetivo-métodos interativos e software”. Anais do XVI Congresso Latino-Iberoamericano de Investigación Operativa. Rio de Janeiro: SOBRAPO, 2012.

AUBERT, H. et al. “Can online interfaces enhance learning for public decision-making? Eliciting citizens’ preferences for multicriteria decision analysis”. European Journal of Operational Research, vol. 314, n. 2, 2024.

AUDET, C. et al. “Performance indicators in multiobjective optimization”. European Journal of Operational Research, vol. 292, n. 2, 2021.

AUGUSTYN, A. et al. “A review of methods applied for wind power generation forecasting”. Polityka Energetyczna Energy Policy, vol. 21, n. 2, 2018.

BAHRAMI, M. et al. “Multi-step island formation and repair dispatch reinforced by mutual assistance after natural disasters.” International Journal of Electrical Power and Energy Systems, vol. 126, 2021.

BRASIL. Lei n. 8.987, de 13 de fevereiro de 1995. Brasília: Planalto, 1995. Disponível em: . Acesso em: 23/01/2024.

CPFL - Companhia Paulista de Força e Luz. Mercado de energia elétrica: tudo o que você precisa saber. São Paulo: CPFL, 2022. Disponível em: . Acesso em: 12/12/2023.

DI PIETRO, M. S. Z. Direito Administrativo. São Paulo: Editora Atlas, 2022.

DURBACH, I. et al. “The analytic hierarchy process with stochastic judgements”. European Journal of Operational Research, vol. 238, n.2, 2014.

EKSIOGLU, B. et al. “The vehicle routing problem: a taxonomia review”. Computers e Industrial Engineering, vol. 57, n. 4, 2009.

FENG, Z. et al. “‘Understanding university students’ perceptions of classroom environment: A synergistic approach integrating grounded theory (GT) and analytic hierarchy process (AHP)”, Journal of Building Engineering, vol. 83, n. 108446, 2024.

FERNSTROM, F.; STEINER, T. A. “A constant approximation algorithm for the uniform a priori capacitated vehicle routing problem with unit demands.” Information Processing Letters, vol. 159, n.105960, 2020.

FISHER, M. L.; JAIKUMAR, R. “A generalized assignment heuristic for vehicle routing”. Networks, vol. 11, n. 2, 1981.

FORTES, B. J. Análise e modelagem do atendimento de ordens de serviço emergenciais em concessionárias de energia elétrica (Dissertação de Mestrado em Engenharia de Produção). Santa Maria: UFSM, 2015.

GARCIA, V. J. et al. “A computational intelligence approach to improve the efficiency of repair services in the smart grid context”. Computers and Electrical Engineering, vol. 70, n. 1, 2018.

GARCIA, V. J. et al. “Multi-Criteria Approach For Emergency Service Orders In Electric Utilities”. Anais do XXVIII European Conference on Modelling and Simulation -Electric Utilities. Brescia: UNIBS, 2014.

KOVAL, V. et al. “Fundamental Shifts in the EU’s Electric Power Sector Development: LMDI Decomposition Analysis”. Energies, vol. 16, n. 14, 2023.

KRAMER, R. H. F. R. et al. “Problema de roteamento de veículos assimétrico com frota heterogênea limitada: um estudo de caso em uma indústria de bebidas”. Gestão e Produção, vol. 23, n. 1, 2016.

LACHTERMACHER, G. Pesquisa Operacional na Tomada de Decisões. Barueri: Editora LTC, 2016.

LAGO, J. et al. “Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark”. Applied Energy, vol. 293, n. 116983, 2021.

LEI, S. et al. “Resilient Disaster Recovery Logistics of Distribution Systems: Co-Optimize Service Restoration with Repair Crew and Mobile Power Source Dispatch”. IEEE Transactions on Smart Grid, vol. 10, n. 6, 2019.

LOOTSMA, F. A. “The French and American School in Multi-Critéria Decision Analysis”. Operations Research, vol. 24, n. 3, 1990.

MARCONI, M.; LAKATOS, E. Fundamentos de metodologia científica. São Paulo: Editora Atlas, 2010

ÑAHUIS, F. V. C. Automação do despacho dinâmico de viaturas para o atendimento das ordens de serviços nas redes de distribuição de energia elétrica (Dissertação de Mestrado em Engenharia). Ilha Solteira: UNESP, 2013.

NEOFYTOU, H. et al. “Sustainable energy transition readiness: A multicriteria assessment index.” Renewable and Sustainable Energy Reviews, vol. 131, n. 109988, 2020.

ORTIZ-BARRIOS, M. et al. “A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A ambreal-world case”. International Journal of Disaster Risk Reduction, vol. 62, n. 102411, 2021.

PARETO, V. Cours d'Economie Politique. Lausanne: Editora Rouge, 1896.

RADUAN, A. C. Roteirização parcialmente dinâmica aplicada a serviços de campo (Dissertação de Mestrado em Engenharia de Sistemas Logísticos). São Paulo: USP, 2009.

RAGHAV, P. L. et al. “Analytic Hierarchy Process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid”. Applied Energy, vol. 306, 2022.

REIS, T. N. F. et al. “Uma Proposta de Classificação para Rotular a Eficiência Energética na Computação em Nuvem Verde”. Boletim de Conjuntura (BOCA), vol. 17, n. 49, 2024.

ROLDÁN-BLAY, C. et al. “Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids”. Sustainability, vol. 11, n. 24, 2019.

SAATY, T. L. Decision Making for Leaders. Pittsburg: RWS Publications, 1991.

SAATY, T. L. The Analytic Hierarchy Process. New York: McGraw-Hill, 1980.

SAMPIERI, R. H.; COLLADO, C. F.; LUCIO, P. B. Metodologia de pesquisa. São Paulo: Editora McGraw-Hill, 2006.

SCHARDONG, B. F. et al. “O problema de roteamento de veículos: um estudo de caso para o atendimento de serviços em concessionárias de distribuição de energia elétrica”. Revista Gestão e Tecnologia, vol. 22, n. 2, 2022.

SCHARDONG, B. F.; GARCIA, V. J. Análise e modelagem do atendimento de ordens de serviço emergenciais em concessionárias de energia elétrica. São Paulo: Editora Dialética, 2023.

SCHMITZ, M. et al. “Análise Multicritério no Atendimento de Ordens Emergenciais em Redes de Distribuição de Energia Elétrica”. Anais do X Congresso Brasileiro de Planejamento Energético. Gramado: CBPE, 2016.

SCHMITZ, M. et al. “Price-Based Dynamic Optimal Power Flow With Emergency Repair.” IEEE Transactions on Smart Grid, vol. 12, n. 1, 2021.

SCIP - Solving Constraint Integer Programs. “About SCIP”. SCIP [2023]. Disponível em: . Acesso em: 10/01/2024.

SEVILLA, J. C. “Do Neoliberalismo na América Latina ao Kirchnerismo: Novos Ventos Continentais?”. Boletim de Conjuntura (BOCA), vol. 13, n. 39, 2023.

SILVA, B. P. et al. “Recuperação de Energia como Alternativa Sustentável”. Boletim de Conjuntura (BOCA), vol. 14, n. 41, 2023.

TICONA, W. G. C. Aplicação de algoritmos genéticos multi-objetivo para alinhamento de sequências biológicas (Dissertação de Mestrado em Ciência da Computação e Matemática Computacional). São Carlos: USP, 2003.

VENANZI, O. S. D. Introdução à engenharia de produção: conceitos e casos práticos. Rio de Janeiro: Editora LTC, 2016.

VIDAL, T. et al. “Heuristics for Multi-attribute vehicle routing problems: a survey and synthesis”. European Journal of Operational Research, vol. 231, n. 1, 2013.

VOLPI, N. M. P. et al. “Logística de atendimento aos usuários de energia elétrica via simulação”. Anais do XVIII Encontro Nacional de Engenharia de Produção. Rio de Janeiro: ENEGEP, 2008.

WEINTRAUB, A. et al. “An emergency vehicle dispatching system for an electric utility in Chile”. Journal of the Operational Research Society, vol. 50, n. 7, 1999.

XU, P. et al. “Energy Saving-Oriented Multi-Depot Vehicle Routing Problem with Time Windows in Disaster Relief.” Energies, vol. 16, n. 4, 2023.

YANG, Z. et al. “Seismic-Resilient Electric Power Distribution Systems: Harnessing the Mobility of Power Sources”. IEEE Transactions On Industry Applications, vol. 56, n. 3, 2020.

ZHU, H. et al. “Robust post-disaster repair crew dispatch for distribution systems considering the uncertainty of switches”. International Journal of Electrical Power and Energy Systems, vol.155, 2024.

ZIMPL - Zuse Institut Mathematical Programming Language. “About ZIMPL”. ZIMPL [2023]. Disponível em: . Acesso em: 05/01/2024.

Most read articles by the same author(s)