INTERSECÇÃO DA QUANTIZAÇÃO E EFICIÊNCIA ENERGÉTICA NA COMPUTAÇÃO EM NUVEM VERDE: UMA ANÁLISE BIBLIOMÉTRICA DAS TENDÊNCIAS EMERGENTES (2010–2025)

##plugins.themes.bootstrap3.article.main##

Thiago Nelson Faria dos Reis
Mario Antônio Meireles Teixeira
Carlos de Salles Soares Neto
Alana Oliveira
Apoena Mendes Sousa

Resumo

Este estudo tem como objetivo analisar, por meio de uma revisão bibliométrica abrangente, a evolução da produção científica que articula computação sustentável e técnicas de quantização no período de 2010 a 2025, identificando tendências, principais atores, lacunas de pesquisa e direções emergentes nesse campo. A pesquisa adota uma abordagem dedutiva e é estruturada como uma revisão bibliométrica sistemática. Os dados foram coletados na base Scopus, a partir de uma string de busca elaborada para capturar a interseção entre sustentabilidade computacional, eficiência energética e quantização. Após a aplicação de critérios predefinidos de inclusão e exclusão, foram selecionados 618 documentos, que constituem tanto o universo quanto a amostra final de análise. A análise dos dados foi realizada por meio de técnicas quantitativas de mapeamento científico, incluindo estatísticas descritivas, análise de co-ocorrência de palavras-chave, análise de redes de coautoria e identificação dos periódicos e autores mais influentes, com o apoio das ferramentas Python e VOSviewer. Os resultados revelam um crescimento acelerado das publicações a partir de 2018, com forte contribuição de países asiáticos, predominância de aplicações em deep learning e crescente ênfase em hardware e arquiteturas energeticamente eficientes. Os achados demonstram que a quantização se consolidou como uma técnica estratégica na pesquisa em computação sustentável, contribuindo para a redução da complexidade computacional e do consumo energético. Simultaneamente, a análise evidencia lacunas persistentes relacionadas à integração de métricas energéticas, ao co-design hardware–software e à ampliação das estratégias de quantização para além de aplicações centradas em inteligência artificial.

##plugins.themes.bootstrap3.article.details##

Como Citar
REIS, T. N. F. dos; TEIXEIRA, M. A. M. .; SOARES NETO, C. de S.; OLIVEIRA, A.; SOUSA, A. M. INTERSECÇÃO DA QUANTIZAÇÃO E EFICIÊNCIA ENERGÉTICA NA COMPUTAÇÃO EM NUVEM VERDE: UMA ANÁLISE BIBLIOMÉTRICA DAS TENDÊNCIAS EMERGENTES (2010–2025). Boletim de Conjuntura (BOCA), Boa Vista, v. 24, n. 72, p. 196–219, 2025. DOI: 10.5281/zenodo.17988512. Disponível em: https://revista.ioles.com.br/boca/index.php/revista/article/view/8199. Acesso em: 25 dez. 2025.
Seção
Artigos

Referências

ABDULNABI, H. “Cloud computing strategies and approaches for better energy efficiency and environmental impact”. Al-Iraqia Journal for Scientific Engineering Research, vol. 3, n. 3, 2024.

ARIA, M.; CUCCURULLO, C. “Bibliometrix: An r-tool for comprehensive science mapping analysis”. Journal of informetrics, VOL. 11, N. 4, 2017.

BELKHIR, L.; ELMELIGI, A. “Assessing ict global emissions footprint: Trends to 2040 & recommendations”. Journal of Cleaner Production, vol. 177, 2018.

BIESER, J. C. et al. “A review of assessments of the greenhouse gas footprint and abatement potential of information and communication technology“. Environmental Impact Assessment Review, vol. 99, 2023.

BISWAS, D. et al. “A succinct state-of-theart survey on green cloud computing: Challenges, strategies, and future directions“. Sustainable Computing: Informatics and Systems, vol. 44, 2024.

BOLO´N-CANEDO, V. et al. “A review of green artificial intelligence: Towards a more sustainable future”. Neurocomputing, vol. 599, 2024.

CAO, N. Towards carbon-aware: Power monitoring in cloud computing (Master’s thesis). Espoo: Aalto University, 2024.

CHEN, L. et al. “A survey on computer vision detection, visual slam algorithms, and their applications in energy-efficient autonomous systems”. Energies, vol. 17, n. 20, 2024.

DHINGRA, P. et al. “Atleus: Accelerating transformers on the edge enabled by 3d heterogeneous manycore architectures”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. Available at: . Accessed on: 12/07/2025.

DONTHU, N. et al. “How to conduct a bibliometric analysis: An overview and guidelines”. Journal of Business Research, vol. 133, 2021.

ELSEVIER. “Scopus”. Elsevier [2025]. Available at: . Accessed on: 12/07/2025.

GAROFALO, A. et al. “Pulp-nn: Accelerating quantized neural networks on parallel ultra-low-power risc-v processors”. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 378, n. 216, 2020.

GHOLAMI, A. et al. “A survey of quantization methods for efficient neural network inference”. ArXiv, vol. 3, 2022.

GONC¸ALVES, C. A. et al. “Adoption of cloud computing in the organizations: a bibliometric analysis of this technology within a digital transformation contexto”. Revista de Administração da UFSM, vol. 16, n. 3, 2023.

GOWDA, S. N. et al. “Watt for what: Rethinking deep learning’s energy-performance relationship”. European Conference on Computer Vision. London: Springer, 2024.

GUO, Q. et al. “An empirical study towards characterizing deep learning development and deployment across different frameworks and platforms”. Proceedings 34th IEEE/ACM International Conference on Automated Software Engineering. Cham: IEEE, 2019.

HAN, S. et al. “Ese: Efficient speech recognition engine with sparse LSTM on FPGA”. Proceedings ACM/ International Symposium on Field-Programmable Gate Arrays. Monterey: SIGDA, 2017.

HE, Q. et al. “Two-dimensional materials based two-transistor-two-resistor synaptic kernel for efficient neuromorphic computing”. Nature Communications, vol. 16, n. 1, 2025.

IEEE - Institute of Electrical and Electronics Engineers. Ieee access. Washington: IEEE, 2025a. Available at: . Accessed on: 12/07/2025.

IEEE - Institute of Electrical and Electronics Engineers. Ieee internet of things journal. Washington: IEEE, 2025b. Available at: . Accessed on: 12/07/2025.

IEEE - Institute of Electrical and Electronics Engineers. Ieee journal of solid-state circuits. Washington: IEEE, 2025c. Available at: . Accessed on: 12/07/2025.

IEEE - Institute of Electrical and Electronics Engineers. Ieee transactions on circuits and systems i: Regular papers. Washington: IEEE, 2025d. Available at: . Accessed on: 12/07/2025.

IEEE - Institute of Electrical and Electronics Engineers. Ieee transactions on computer-aided design of integrated circuits and systems. Washington: IEEE, 2025e. Available at: . Accessed on: 12/07/2025.

IEEE - Institute of Electrical and Electronics Engineers. Ieee transactions on computers. Washington: IEEE, 2025f. Available at: . Accessed on: 12/07/2025.

IEEE - Institute of Electrical and Electronics Engineers. Ieee transactions on very large scale integration (vlsi) systems. Washington: IEEE, 2025g. Available at: . Accessed on: 12/07/2025.

IEEE - Institute of Electrical and Electronics Engineers. Proceedings of the asia and south pacific design automation conference (asp-dac). Washington: IEEE, 2025h. Available at: . Accessed on: 12/07/2025.

IEEE - Institute of Electrical and Electronics Engineers. Proceedings of the ieee international symposium on circuits and systems (iscas). Washington: IEEE, 2025i. Available at: . Accessed on: 12/07/2025.

ISLAMOGLU, G. et al. “Ita: An energy-efficient attention and softmax accelerator for quantized transformers”. Proceedings of the International Symposium on Low Power Electronics and Design. Portland: IEEE, 2023.

JIA, H. et al. “A programmable heterogeneous microprocessor based on bit-scalable in-memory computing”. IEEE Journal of Solid-State Circuits, vol. 55, n. 9, 2020.

JIANG, H. et al. “Post training quantization after neural network”. 14th International Conference on Computer Research and Development. Washington: IEEE, 2022.

LEE, H. et al. “Deep learning for distributed optimization: Applications to wireless resource management”. IEEE Journal on Selected Areas in Communications, vol. 37, n. 10, 2019.

LI, M. et al. “Contemporary advances in neural network quantization: A survey”. International Joint Conference on Neural Networks. Washington: IEEE, 2024.

LIANG, S. et al. “ Fp-bnn: Binarized neural network on fpga”. Neurocomputing, vol. 275, 2018.

LIAO, L. et al. “An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks”. ACM Transactions on Software Engineering and Methodology, vol. 31, n. 3, 2022.

LIU, J. et al. (2021). “Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence”. Remote Sensing, vol. 13, n. 21, 2021.

LIU, K. et al. “Low-bit model quantization for deep neural networks: A survey”. arXiv, vol. 1, 2025.

LYU, X. et al. “Energy-efficient Admission of delay-sensitive tasks for mobile edge computing”. IEEE Transactions on Communications, vol. 66, n. 1, 2016.

MARANHÃO, G.; PANTOJA, M. J. “Teletrabalho e qualidade de vida dos servidores públicos: uma revisão sistemática de literatura”. Boletim de Conjuntura (BOCA), vol. 20, n. 60, 2024.

MARQUES, S. C. et al. “O papel da heurística do afeto na percepção de riscos e aceitação de tecnologias alimentares emergentes: Uma revisão sistemática”. Boletim de Conjuntura (BOCA), vol. 21, n. 63, 2025.

MCALLISTER, J. T. et al. “Mapping a discipline: a guide to using vosviewer for bibliometric and visual analysis. Science and Technology Libraries, vol. 41, n. 3, 2022.

MORAL-MUN˜OZ, J. A. et al. “Software tools for conducting bibliometric analysis in science: an up-to-date review”. Profesional de la Información, vol. 29, n. 1, 2020.

OLIVEIRA, I.; ROTHEN, J. C. “Análise bibliométrica da produção acadêmica em periódicos científicos sobre os processos de autoavaliação institucional na educação superior brasileira”. Boletim de Conjuntura (BOCA), vol. 8, n. 22, 2021.

PACHECO, J. T. R. R.; SILVA, J. M. F. “Mapeamento bibliométrico sobre geodiversidade e serviços ecossistêmicos”. Boletim de Conjuntura (BOCA), vol. 23, n. 68, 2025.

PAGE, M. J. et al. “Prisma 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews”. BMJ, vol. 372, 2021.

PENG, R. et al. Real-time fire detection algorithm on low-power endpoint device. Journal of Real-Time Image Processing, vol. 22, n. 1, 2025.

PENG, X. et al. “Dnn+neurosim v2: An end-to-end benchmarking framework for compute-in-memory accelerators for on-chip training”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, n. 11, 2021.

PRANCKUTE˙, R. “Web of science (wos) and scopus: The titans of bibliographic information in today’s academic world”. Publications, vol. 9, n. 1, 2021.

RAKKA, M. et al. “A review of stateof-the-art mixed-precision neural network frameworks”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, n. 12, 2024.

REIS, T. N. F. et al. “A tier labeling proposal for energy efficiency in green cloud”. Journal of Sustainability Research, vol. 6, n. 1, 2024a.

REIS, T. N. F. et al. “Uma proposta de classificação para rotular a eficiência energética na computação em nuvem verde”. Boletim de Conjuntura (BOCA), vol. 17, n. 49, 2024b.

RO´Z˙YCKI, R. et al. “Energy-aware machine learning models—a review of recent techniques and perspectives”. Energies, vol. 18, n. 11, 2025.

SILVA, C. A. et al. “A a´gua como bem comum: Um estudo bibliométrico em âmbito internacional”. Boletim de Conjuntura (BOCA), vol. 24, n 71, 2025.

STATE COUNCIL OF THE PEOPLE’S REPUBLIC OF CHINA. The 14th Five-Year Plan for National Economic and Social Development of the People’s Republic of China (2021–2025). Beijing: State Council, 2021.

STRUBELL, E. et al. “Energy and policy considerations for deep learning in NLP”. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019.

SUN, X. et al. “Drvit: Dynamic redundancy-aware vision transformer accelerator via algorithm and architecture co-design on FPGA”. Journal of Parallel and Distributed Computing, vol. 199, 2025.

YANG, B. “Lightweight federated learning for energy-efficient english corpus distribution and optimization in edge-cloud collaboration networks”. Internet Technology Letters, vol. 8, n. 4, 2025.

YANG, J. et al. “A survey on neural network quantization”. Proceedings of the 2025 6th International Conference on Computer Information and Big Data Applications. Washington: IEEE, 2025.

YOU, X. et al. “A survey and taxonomy on energy aware data management strategies in cloud environment”. IEEE Access, vol. 8, 2020.

ZHAO, L. et al. “A 90.1db sndr, 180.2db fomsndr, 10khz bw gmc-based . adc with capacitive input feedforward and duty-cycled gm technique”. Proceedings of the Custom Integrated Circuits Conference. Washington: IEEE, 2025.

ZHU, X. et al. “A survey on model compression for large language models”. Transactions of the Association for Computational Linguistics, vol. 12, 2024.

ZUPIC, I.; Cˇ ATER, T. “Bibliometric methods in management and organization”. Organizational research methods, vol. 18, n. 3, 2015.

Artigos mais lidos pelo mesmo(s) autor(es)