UMA PROPOSTA DE CLASSIFICAÇÃO PARA ROTULAR A EFICIÊNCIA ENERGÉTICA NA COMPUTAÇÃO EM NUVEM VERDE
##plugins.themes.bootstrap3.article.main##
Resumo
Este artigo explora a crescente relevância da computação em nuvem no cotidiano e no contexto empresarial, destacando a importância de abordagens proativas para mitigar seu impacto ambiental. A computação em nuvem verde constitui uma iniciativa importante para reduzir o consumo de energia e as emissões de CO2 associadas à computação em nuvem, sem comprometer sua funcionalidade e desempenho. O foco principal deste trabalho é avaliar a eficácia de algoritmos de escalonamento de recursos em data centers de computação em nuvem e desenvolver uma metodologia inovadora para calcular scores de eficiência energética e classificar o desempenho energético. Utilizando o ambiente de simulação CloudSim Plus, quatro algoritmos - Round Robin (RR), Dynamic Voltage and Frequency Scaling (DVFS), Particle Swarm Optimization (PSO) e Ant Colony System (ACS) – e as compara através de 800 simulações. Além das simulações, a metodologia envolveu a análise dos dados através de técnicas estatísticas rigorosas, incluindo o uso da tabela T-Student, e a criação de um índice de desempenho energético derivado dos resultados obtidos. A pesquisa também incorporou inteligência artificial, especificamente classificadores baseados em redes neurais, para aprimorar a classificação dos níveis energéticos. Os resultados indicaram uma redução significativa no consumo de energia e emissões de CO2 - aproximadamente 55% - e uma melhoria na eficiência de custo de alocação de máquinas virtuais, em torno de 28%. O estudo demonstra que a adoção de estratégias de escalonamento inovadoras e a implementação de um modelo quantitativo de avaliação energética podem otimizar significativamente a eficiência da computação em nuvem. Além disso, a proposta de um novo cálculo de scores e a criação de uma escala de nível energético oferecem ferramentas valiosas para a otimização e sustentabilidade em data center.
##plugins.themes.bootstrap3.article.details##
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Direitos autorais (c) .
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.
Referências
AGRAWAL, M. N.; SAINI, M. J. K.; WANKHEDE, P. “Review on green cloud computing: a step towards saving global environment”. International Journal of Engineering Research and Technology, vol. 8, n. 5, 2020.
ALVAREZ, P. A. et al. Multiple-criteria decision-making sorting methods: A survey. Expert Systems with Applications, vol. 183, 2021.
AMAZON. “Amazon WorkSpaces Family pricing”. Amazon [2023]. Disponível em: . Acesso em: 01/08/2023.
ANSER, M. K. et al. “The role of information and communication technologies in mitigating carbon emissions: evidence from panel quantile regression”. Environmental Science and Pollution Research, vol. 28, 2021.
ARAÚJO, R. S. de et al. “Fontes de energias renováveis: pesquisas, tendências e perspectivas sobre as práticas sustentáveis”. Research, Society and Development, vol. 11, n. 11, 2022.
BARBIERATO, E. et al. Exploiting cloudsim in a multiformalism modeling approach for cloud based systems. Simulation Modelling Practice and Theory, vol. 93, 2019.
BASH, C. et al. “Cloud sustainability dashboard, dynamically assessing sustainability of data centers and clouds”. Proceedings of the Fifth Open Cirrus Summit, Hewlett Packard, vol. 13, 2011.
BHARANY, S. et al. “A systematic survey on energy-efficient techniques in sustainable cloud computing”. Sustainability, vol. 14, n. 10, 2022.
BISWAS, N. K. et al. “An approach towards development of new linear regression prediction model for reduced energy consumption and SLA violation in the domain of green cloud computing”. Sustainable Energy Technologies and Assessments, vol. 45, 2021.
CHICHE, A.; YITAGESU, B. “Part of speech tagging: a systematic review of deep learning and machine learning approaches”. Journal of Big Data, vol. 9, n. 1, 2022.
CLOUDSIM. “Full-featured and fully documented cloud simulation framework”. Clousdim Plus [2016]. Disponível em: . Acesso em: 10/12/2023.
EPA - Environmental Protection Agency. “Greenhouse Gas Equivalencies Calculator”. EPA [2022]. Disponível em: . Acesso em: 10/12/2023.
ESPADOTO, M.; HIRATA, N. S. T.; TELEA, A. C. Self-supervised dimensionality reduction with neural networks and pseudo-labeling. Lisboa: SciTePress, 2021.
FRANÇA, C. G. et al. “Análise comparativa de modelos de previsão de geração de energia eólica baseados em machine learning”. Revista de Sistemas e Computação, vol. 9, n. 2, 2020.
GARG, S. K.; YEO, C. S.; BUYYA, R. “Green cloud framework for improving carbon efficiency of clouds”. European Conference on Parallel Processing. France: Springer, 2011.
JAIN, R. Computer systems performance analysis. London: Wiley, 2010.
JENA, S. R. et al. “Cloud computing tools: inside views and analysis”. Procedia Computer Science, vol. 1731, 2020.
KHAN, M. A. “An efficient energy-aware approach for dynamic VM consolidation on cloud platforms”. Cluster Computing, vol. 24, n. 4, 2021.
KHAN, T. et al. “Workload forecasting and energy state estimation in cloud data centres: ML-centric approach”. Future Generation Computer Systems, vol. 128, 2022.
KUMAR, R. et al. “Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review”. Journal of Materials Research and Technology, vol. 10, 2021.
LIN, J. C. W. et al. “ASRNN: A recurrent neural network with an attention model for sequence labeling”. Knowledge-Based Systems, vol. 212, 2021.
LIU, Y. et al. “Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers”. Global Energy Interconnection, vol. 3, n. 3, 2020.
MAKARATZIS, A. T.; GIANNOUTAKIS, K. M.; TZOVARAS, D. “Energy modeling in cloud simulation frameworks”. Future Generation Computer Systems, Elsevier, vol. 79, 2018.
MANDAL, A. K.; DEHURI, S. “A survey on ant colony optimization for solving some of the selected np-hard problem”. International Conference on Biologically Inspired Techniques in Many-Criteria Decision Making. London: Springer, 2019.
MASDARI, M.; ZANGAKANI, M. “Green cloud computing using proactive virtual machine placement: challenges and issues”. Journal of Grid Computing, Springer, vol. 18, n. 4, 2020.
MEYER, V. et al. “Simulators usage analysis to estimate power consumption in cloud computing environments”. Symposium on High Performance Computing Systems. Washigton: WSCAD, 2018.
MOHAMMADZADEH, A. et al. “Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing”. Evolutionary Intelligence, vol. 14, 2021.
NESMACHNOW, S. et al. “Energy-aware scheduling on multicore heterogeneous grid computing systems”. Journal of grid computing, vol. 11, 2021
PANWAR, S. S. et al. “A systematic review on effective energy utilization management strategies in cloud data centers”. Journal of Cloud Computing, vol. 11, n. 1, 2022.
RADU, L. D. “Green cloud computing: A literature survey”. Symmetry, Multidisciplinary Digital Publishing Institute, vol. 9, n. 12, 2017.
SABOOR, A. et al. “Enabling rank-based distribution of microservices among containers for green cloud computing environment”. Peer-to-Peer Networking and Applications, vol. 15, n. 1, 2022.
SAYADNAVARD, M. H.; HAGHIGHAT, A. T.; RAHMANI, A. M. “A multi-objective approach for energy-efficient and reliable dynamic VM consolidation in cloud data centers”. Engineering science and technology, an International Journal, vol. 26, 2022.
SETYANINGRUM, R.; KHOLID, M. N.; SUSILO, P. “Sustainable SMEs Performance and Green Competitive Advantage: The Role of Green Creativity, Business Independence and Green IT Empowerment”. Sustainability, vol. 15, n. 15, 2023.
SHU, W. et al. “Research on strong agile response task scheduling optimization enhancement with optimal resource usage in green cloud computing”. Future Generation Computer Systems, vol. 124, 2021.
SILVA FILHO, M. C. et al. “Cloudsim plus: A cloud computing simulation framework pursuing software engineering principles for improved modularity, extensibility and correctness”. Symposium on Integrated Network And Service Management. London: Springer, 2017.
SILVA, D. T. da et al. “Modeling and simulation of cloud computing with ispd”. Anais do XXIII Simpósio em Sistemas Computacionais de Alto Desempenho. São Paulo: SBC, 2022.
SRIRAM, G. S. “Green cloud computing: an approach towards sustainability”. International Research Journal of Modernization in Engineering Technology and Science, vol. 4, n. 1, 2022.
STERGIOU, C. L.; PSANNIS, K. E.; ISHIBASHI, Y. “Green cloud communication system for big data management”. 3rd World Symposium on Communication Engineering. Washington: WSCE, 2020.
TOLEDO JUNIOR, T. J.; BRUSCHI, S. “Epcsac-extensible platform for cloud scheduling algorithm comparison”. Anais Estendidos do XXI Simpósio em Sistemas Computacionais de Alto Desempenho. São Paulo: SBC, 2020.
WADHWA, M. et al. “Green cloud computing-a greener approach to it”. International conference on computational intelligence and knowledge economy. Cham: Springer, 2019.
YANG, J. et al. “Ai-powered green cloud and data center”. IEEE, vol. 7, 2018.
ZHANG, M. et al. “Labeling trick: A theory of using graph neural networks for multi-node representation learning”. Advances in Neural Information Processing Systems, vol. 34, 2021.
ZHENG, Y.; WANG, D. “Multi-criteria ranking: Next generation of multi-criteria recommendation framework”. IEEE, vol. 10, 2022.
ZONG, Z. “An improvement of task scheduling algorithms for green cloud computing”. 15th International Conference on Computer Science and Education. Washington: ICCSE, 2020.