ARTIFICIAL INTELLIGENCE FROM QUALITATIVE REASONING: OVERVIEW OF TEACHING MATERIALS IN NATURAL SCIENCE TEACHING
Main Article Content
Abstract
This paper discusses the use of Artificial Intelligence (AI), through qualitative simulation models, as teaching materials in science teaching. To this end, this research aimed to identify materials produced and published in Brazilian literature from 2000 to 2022, based on Qualitative Reasoning (RQ). RQ is an area of AI that seeks to develop symbolic reasoning to understand the functioning of complex systems, generally interdisciplinary, through qualitative models. For this review, we used the Google Scholar database, based on the search strategy, built with the help of the Boolean operators “simulation models” OR “qualitative models” OR “qualitative reasoning”, for texts in Portuguese. The data was tabulated and then categorized for discussion. In total, 19 works were found, of which: eight focused on science teaching, from the ‘Middle School segment; four texts related to the teaching of Chemistry; four that discuss RQ for deaf students; a production for the area of physics teaching; a production related to biology; and, finally, a text aimed at the inclusion of deaf and hearing people. This literature review showed that there are still few works that appropriate the use of teaching materials, based on RQ, for the classroom. This low number of productions is possibly due to the recent arrival of RQ nationwide. Furthermore, AI, through RQ, has shown potential, since students can use qualitative simulation models to allow students to develop hypothetical-deductive logical reasoning, especially in a visual way.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c). Conjuncture Bulletin (BOCA)
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
ALVES, F. B. Raciocínio qualitativo e desenvolvimento de raciocínio hipotético-dedutivo: uma proposta para alunos surdos (Dissertação de Mestrado em Ensino de Ciências). Brasília: UnB, 2015.
BASTOS, R. C. G. Introdução à dinâmica de sistemas: proposta de disciplina a distância para curso de licenciatura em biologia, com uso de modelos qualitativos (Dissertação de Mestrado em Ensino de Ciências). Brasília: UnB, 2014.
BREDEWEG, B. et al. “DynaLearn – An Intelligent Learning Environment for Learning
Conceptual Knowledge”. AI Magazine, vol. 34, n. 4, 2013.
BREDEWEG, B. et al. “Qualitative Representations for Systems Thinking in Secondary Education”. Proceedings at 34th International Workshop on Qualitative Reasoning. Montreal: IJCAI, 2021.
CAVALCANTE, T. F. Avaliação do Uso de Modelagem Qualitativa com Apoio de Agentes Aprendizes Virtuais na Compreensão da Dinâmica de Sistemas por Alunos do Ensino Fundamental (Dissertação de Mestrado em Ensino de Ciências). Brasília: UnB, 2015.
FELTRINI, G. M. Aplicação de modelos qualitativos à educação científica de surdos (Dissertação de Mestrado em Ensino de Ciências). Brasília: UnB, 2009.
KRAGTEN, M. et al. “Learning Domain Knowledge and Systems Thinking using Qualitative Representations in Secondary Education (grade 9-10)”. Proceedings at 34th International workshop on Qualitative Reasoning. Montreal: IJCAI, 2021.
KRAGTEN, M.; BREDEWEG, B. “Describing the characteristics of circular and elliptical motion using qualitative representations”. Proceedings at 36th International Workshop on Qualitative Reasoning. Krakow: IJCAI, 2023.
LEÃO, I. G. S. O uso de modelos de Raciocínio Qualitativo para investigar a teoria e a dinâmica de metapopulações (Dissertação de Mestrado em Ecologia). Brasília: UnB, 2011.
LIEM, J. Supporting Conceptual Modelling of Dynamic Systems: A Knowledge Engineering Perspective on Qualitative Reasoning (PhD Thesis in Computer science). Amsterdam: UvA, 2013.
RESENDE, M. M. P. Avaliação do uso de modelos qualitativos como instrumento
didático no ensino de Ciências para estudantes surdos e ouvintes
(Dissertação de Mestrado em Ensino de Ciências). Brasília: UnB, 2010.
SALLES, P.; GAUCHE R.; VIRMOND P. A. “Qualitative Model of Daniell Cell for Chemical Education”. Proceedings of the Computer Science Conference. Heidelberg: ITS, 2004.
SOUZA, P. V.; SALLES, P.; GAUCHE, R. “O uso de modelos qualitativos como recurso didático para o ensino de Ciências”. Anais do XII Encontro Nacional de Pesquisas em Educação em Ciências. Natal: UFRN, 2019.
SOUZA, P. V.; SALLES, P.; GAUCHE, R. “Um modelo de simulação baseado em raciocínio qualitativo para a educação em ciências”. Revista Actio: Docência em Ciências, vol. 2, n .1, 2017.